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INERTIAL RANGES IN TWO-DIMENSIONAL TURBULENCE

Robert H. Kraichnan

Peterborough, New Hampshire

Two-dimensional turbulence has both kinetic energy and mean-square
vorticity as inviscid constants of motion. Consequently it adumits two

formal inertial ranges, E(k) » ¢313k‘5f° 2f3k-3

and E(k) ~ n s Wheras ¢ is
the rate of cascade of kinetic energy per unit mass, n is the rate of
cascade ol mean-square vorticity, and the kinetic energy per unit mass
is IG-E{k}dk. The -5/3 range is found to entail backward energy cascade,
from higher to lower wavenumbers k, together with zero vorticity flow.
‘e =3 range gives an upward vorticity flow and zero energy flow. Th2
paradox in these results is resoled by the irreducibly triangular nature
of the elementary wavenumber-interactions. The formal -3 range gives a
nonlocal cascade and consequently must be modified by lozarithmic factors.
If energy is fed in at a constant rate to a band of wavenumbers ﬁ-ki and
the Reynolds number is large, it is conjectured that a quasisteady state
results with a =5/3 range for k <« ki and a -3 range for k »>> k,, up to
with time
the viscous cut-off, The total kinetic energy i-ncreases steadily,as the
-5/3 range pushes to ever-lower k, until scales the size of the entire
fluid are strongly excited, The rate of energy dissipation by viscosity

decreases to zero if kinematic viscosity is decreased to zerc with cother

parameters unchanged.



1. INTRODUCTION

The vorticity of each fluid element is an inviscid constant of
moticon in two-dimensional incompressible flow., Therefore the mean-square
vorticity as well as the kinetic energy per unit mass are inviscid con-
stants in two-dimensional isotropic turbulenze. A number of authors
have stuildied twc-dimensional turbulence theoretically, and it is recognized
that the vorticity constraint has profound ef{ects on inertial energy
transfer.l'g In contrast to the predominantly one-way flow of energy
familiar in three dimensions, "ransfer upward in wavenumber must be
accompanied by comparable or greater downward transfer,

According to the two-dimensional Navier-Stokes equation, the inter-
action of each triad of wavenumbers k, p, g individvally conserves both
erergy and squared vorticity. In order to separate off questions involving
the localness of energy transfer, suppoce that all triad interactions for
which the smallest of the three wavenumbers is less than, say, cone-half
the largest are aroitrarily eliminated fror the dynamical equationms.
Divide the wavenumber range into half-octave segments, so that all the
triad interactions left in the equations either :connect nearest-neighbor
segments or are contained entirely within a single segment. Fig. l-a
illustrates the segmentation and the way in which the triad interactions
connect nearest neighbors. In order for both energy and squared vorticity
to be conserved, the net transfer by each triad interaction must either be
out of the middle wavenumber into both smallest and largest wavenumbers,
or vice versa., The arrows in Fig. l-a are arbitrarily drawn for the case

of cutflow from the middle wavenumber.



In three dimensions, the triad interactions can be likened with some
success to pair interactions (Fig. 1-b). This is inadmissible in two di-
mensions because pair interactions cannot transfer both energy and squared
vorticity conservatively between unequal wavenumbers.

There is no simple general relation between energy and squared-
vorticity transfer. ©OSegment n in Fig. l-a is connected to the lower-wave-
number segment n-1 by twe kinds of triad interactions: those with a pair
of wavenumbers in n and those with a pair of wavenumbers in n-1. The
former transfer squared vorticity and kinetic energy per unit mass from
n=1 te n in ratios < 2kn2, vwhere kn is the wavenumber which separates the
segments, The latter transfer these quantities in ratiocs > anz. The
net rates of energy transfer per unit mass ¢ and squared-vorticity transfer
n from below kn to above kn depend on the sigius and relative strengths of
the two kinds of interactions. For example, if the interactions having
a single wavenumber in n are sufficlently strong compared to those having
» single wavenumber in n-1, it is possible forn to be positive while
simultaneously ¢ is negative,

An important inference can be made for similarity cascades where a
k-independent total contribution to ¢ is made by all triads whose ratic of
largest to smallest wavenumber falls below some arbitrary limit, The triple
moments can be chosen to construct such ranges at a given instant. Whether
they are self-preserving is another matter. By similarity, the vorticity
cascade rate must have the form n = 2ak25 with A k-independent. But the
rate itself must be independent of k. OCtherwise, the outflow of squared

vorticity from each segment would not equa. the inflow, which would viclate
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vorticity conservation since with k-independent ¢ the rate-cof-change of
excitation intensity is instantaneously zero at each k. The only possible
resclution is A = 0, That is, the rate of squared-vorticity cascade is
identically zero in a similarity cascade where ¢ is independent of k.
This is corrobocrated by formal analysis in Sec. 2.

The roles of energy and squared vorticity are interchangeable in
the preceding argument. If there is a similarity range with k-independent
contribution to n from the triad interactions whose ratio of largest to
smallest wavenumber ralls within some limit, then the contribution of
those triads to ¢ sust be identically zero within the range. This means
that two kinds of putative inertial-transfer similarity ranges must be
investigated: energy-transfer and vorticity-transfer ranges. Kolmogorov's
assumption that the enexgy spectrum E(k) depends only on k and ¢ leads to

t213k-5f3

E(k) = C (1.1)

in two dimensions as well as in three. Here E(k) is defined so that the

mean kinetic energy per unit mass is Iu.tlk)dk,and C is a constant whose

value can depend on the dimensionality. The alternate assumption that the
on

squared-vorticity spectrum ?k?E(k} depends,only n and k yields

2!3k-3‘

E(k) = C'n (1.2)

where C' is another constant. In Sec. 2 it is shown that (1.1) and (1.2)
each satisfy beth conservation laws. Necessary conditions for the physical
realizability of these similarity ranges are that the transfer processes

be sufficiently local in wavenumber when all triads are admitted. This is

discussed in Sec. 4 where it is noted that the -3 range fails by logarithmic



factors to be suff’ciently local and therefore must be modified by fadors
with logarithmic k dependence.

Both experiment and general statistical-mechanical considerations
indicate that the energy cascade through the inertial range is from lower
to higher wavenumbers in three-dimensional turbulence. The intensity at
high wavenumbers is suppressed by viscosity and it is natural tc expect
a net transfer toward these wavenumbers from the strongly excited low
wavenumbers. .n two dimensions, the vorticity constraint drastically
changes matters. A given triad interaction spreads the excitation in
wavenumber space if it gives a net flow out of the middle wavenumber into
the small and large wavenumbers, The reverse flow concentrates the exci-
tation. Spreading of the excitation by the triad interactions would
seem to be the more plausible state of affairs. Some supporting evidence
is presented in Sec. 3. If the triad interactions do spread the excitaticn
in wavenumber space, then it is proved in Sec, 3 that the -5/3 range yields
€ < 0; that is, the energy cascade is downward in wavenumber, The -3
range under the same condition yields vorticity cascade upward in wave-
number (n > 0),

If the directions of cascade are as just described, the -5/3 range
could serve to remove energy from an input range of wavenumbers down toward
zerc wavenumber, while the -3 range could carry vorticity up to the dissi-
pation range. Thus both ranges could exist simultaneously. This conjec-

ture is dis~ussed in Sec. 4.



2. FORMAL ANALYSIS OF THE .SIMILARITY RANGES
Let the flow be confined in a cyclic box of side D and expand the
velocity field in Fourier series so that the incompressible Navier-Stokes

equation becomes

(p}u (q}, (2.1)

(3/3% + vk2 Yuk) = -k (8 -k kfk ) pg

where v is the kinematic viscosity. In the limit D + = (necessary for

strict isotropy),
: " 42 2
E(k) = wkUik), ulk) = (07273 Ju) %), (2.2)

where ()dnnotes ensemble average and the mean kinetic energy per unit
mass is IOHE(k}dk. U(k) measures the intensity of excitation per mode.

The energy balance equation is

(373t + 2vk2)E(K) = T(K),

T(k) = %IGIDT(k,p,Q)dpdq. T(k,psq) = T(kya,p)s  (2.3)

where

T(k,psq) = 2k Im((2n/|sin(p,@)[)(D/2m)"(x ¢, §Ps81)

3°im
#
“ug(Rug(plu (@)} Ceprq, k = [kl, p = Iply a = laD),

T(k,p,q) = 0 (if k, p, q cannot form the sides of a triangle). (2.%)

To obtain (2.4) from (2.1), use E = {(D/2n) j!d p (D= =) and ”dzp =
21”151:1{2.3_” apdq.

Detailed conservation of energy and squared vorticity for each triad

interaction is expressed by

T{k,p,q) + T(p,q,k) + T(q,k,p) = 0,

K2T(k,p,q) + PT(p,q.k) + q°T(q.k,p) = 0, (2.5)



which can be verified from (2.4) with the use of incompressibility and

plane-tria.gle identities. The overall conservation laws

L L
[ Tk = o, f ¥*100dk = 0 (2.6)
0 0
follow from {2,5). Convecrsely, (2,6) implies (2,5), since (2.6) must hold
for states in which only a single triad of wavevectors have nonzero ampli-

tudes at an instant so that the instantaneous T{ ) vanishes ocutside the

triad. By (2.5),
2.2 2 2
T(p,q,k) /T(k,p,q) = (g"-k")}/(p"-q"),  T(q,k,p)/T(p,q,k)
= (2-p?)tq?x?), TCk,p,@) /T(q,k,p) = (p2=g2)/03-p?) (2.7

so that only one of the T( , , ) associated with a given triad interaction
is linearly independent.
The mean rate of transfer of kinetic energy per unit mass from wave-

numbers below k to those above is MN(k) = Jk"l'(k'}dk'. By (2.5),

- k k k = =
n(k) = %jkdk'fuju'r(k',p.q}dpdq - %— Iodk'fkjk'l'{k',?,q)dpdq. (2.8)

The first term on the right-hand side is the total rate of gain in the
range k' > k due to triad interactions with p,q < k, while the second
term is the total rate of loss in the range k' < k due to triads with
Psq > k. These two classes of triad interactions are mutually exclusive
and exhaust the interactions which contribute to net energy transfer
across k., Similarly, the mean rate of transfer of squared vorticity

from below k to above k is

g R dpdqg k , ew
2(k) = f (k*)%ak'[ [ T(k',pyq), - [ (k*)%ak*[ [ T(k',p,q)dpdq.  (2.9)
k 00 0 k k



Assume that the double and triple moments at the instant considered
satisfy the similarity laws

-{1+3n)/2
]

E(ak)/E(k) = a™", T(ak,ap,aq)/T(k,p,q) = a (2.10)

where a is an arbitrary scaling factor and n is so far undetermined. The
scaling of T(k,p,q) in (2.10) is the same as that of [Bikilaizk'lfz
{which has the same dimensions) and corresponds to a-independence of the
appropriately defined triple-correlation coefficients of the distribution
of the Fourier amplitudes in the neighborhoods of the wavenumber arguments,
Note thatfukdpjukdq is equivalent to 2Inkdpfupdq in the first term on
the right-hand side of (2.8) because or the symmetry of T(k',p,q), while
Ik'ﬁpjkhaq in the second term is equivalent to 2Ik-dpj “dq. Set p = k/u,
q = pv, k' = pw in the first teim and p = k/u, k' = pv, q = pw in the
second term, Note that I].du!u-di is equivalent to Il dufl du in the
first term and Iﬂldufuudv is equivalent to Iﬁldvjvldu in the second term.
Use (2.10) with a = k/u, and finally use (2.7) to obtain
n(k) = kts'an)f?fldvffdu W, (v,9,0)T(L,v,) (2.11)
b 11 Va¥, Wawl,y .

where

(3n-72/24, (2 1}f Cn-T32,,.9, (2.12)

v

W,(v,w,n) = ety h [(1-v )I

Repeating the procedure for Z(¥) gives

1 L
Zik) = 2k(9-3n]f2j' d\r! dw HZ(?,H.II)T(],,\I*H}' (2.13)
0 1
where
"
W,(v,w,n) = vV G3n-1172, 2 12 u(an “1)/2,,
1 v

(2.14)
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Equations (2.11) and (2.13) er :ess Ni{k) and Z(k) as integrals over
contributions from all the possible shapes of the triangles formed by
k', py, q in (2.8) and (2,9). Since v < 1 and w > 1, each pair of values
v, W corresponrds uniquely to a particular triangle shape. By definition,
T(1,v,w) is zeroc if 1, v, w cannot form a triangle. The W factors give
the weights of the contributions of the different triangle shapes and
arise from integration over triangle size.

If n = 5/3, (2.11) says that N{k) has a value ¢ which is independent
of k. If n =3, (2,13) gives 7(k) a value n which is independent of k.
By (2.12) and (2.14),

W, (v,4,5/3) = =(e°=v" ) H-v?)InG) (W=D 1n(v) ],
W,(v,%,5/3) = 0, W,(v,w,3) = 0, '
HQ{v,u,S} z -(uz-\rz)—l{(1-v2}u21n{u)+(u2-1)v21n(v)l. (2.15)

Thus, for each triangle shape individually, an n = 5/3 similarity range
yields a k-independent energy cascade and identically-zero vorticity
cascade, while an n = 3 similarity range yields a k-independent squared-
vorticity cascade and identically-zero energy cascade,

The scaling of E(k) has not been used in cbtaining these results.
Therefore they hold also for more general similarity ranges in which n

is replaced by n' # 2 in the first equation of (2.10),
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3. CASCADE DIRECTIONS

T(l,v,w) in (2,11) and (2.13) represents a (signed) flow into the
middle wavenumber of the triad l,v,w since v < 1 and w > 1, It is shown
in the Appendix that Hl{v,u,SIS} > 0 and HE(V,H.3} < 0, This means that
the contribution of each triangle shape to ¢ in the -5/3 range has the
same sign as the flow of excitation into the middle wavenumber, while the
contribution to n in the -3 range has the opposite sign. There is nothing
in the conservation properties by themselves to determine the sign of
T(l,v,w). Indeed, if a similarity range with a given sign of T(1l,v,w)
exists at an instant, then a range with the opposite sign is produced by
reversing the veleocity everywhere in space.

Physical interest attaches not to hypothetical instantaneous similar-
ity ranges but tc the possibility of quasisteady ranges which develop
under the dynamical equations., In three dimensions, a hint as to the
direction of cascade in the -5/3 range comes from considering the absolute
statistical equilibrium which would obtain if viscosity were zero and the
system were truncated by removing all degrees of freedom with k greater
than some cutoff wavenumber k__  from the dynamical equations. The total
kinetic energy per unit mass is %-[hlgtg)l2, and consequently the energy
spectrum in the hypothetical absolute equilibrium would have the equiparti-
tion form U(k) = constant, or E(k) = kz. The -5/3 spectrum means that
higher wavenumbers in the inertial range are far below absclute equilibrium
with lower wavenumbers and it is plausible that the dynamical interaction
should act toward producing equilibrium, a state which never can be reached

because the viscous dissipation provides a high-k sink.
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In two dimensions, the absolute equilibrium has a more complicated
structure because there are two linearly independent quadratic constants

of motion. The general form of the equilibrium spectrum is

U(k) = 1/(8k? + a), (3.1)

where B and a are constants. This is an equipartition dintributionlo for

the constant of motion Ektﬁkz . u)|g(§)!2. The corresponding vorticity
spectrum 27k U(k) 1nerna;;s monotonically with k so that most of the
vorticity in equilibrium is at wavenumbers ~ k'nx. Since kmax can be
arbitrarily high, this suggests that a tendency toward equilibrium in
an actual physical flow should Involve an upward flow of vorticity and
therefore, by the conservation laws, a downward flow of energy. Thus if
the nonlinear interaction dces act toward producing equilibrium, T(1,v,w)
should be typically negative. A simpler and cruder statement is that
T(1,v,w) should be negative because that represents a statistically
plaus’ble spreading of the excitation in wavenumber: out of the middle
wavenumber into the extremes.

Supporting evidence is provided by the initial growth of energy
transfer in turbulence whose initial statistical distribution is Gaussian,
The exact expression for this in two dimensions has been obtained by

Reid® and ogura.® It is

[dT(k,p,a)/dt], =212k2dkpqizakpqutplﬂtq)-bkpqﬂtq}U(k)'hkqpu(k)U(pJ].

(3.2)
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Here

bkpq

“kpq

-1 3 )
2pk” “(xy-z+2z"), 200 ° bkpq+bkqp.

2}1!2

k/(1-x = diameter of circumscribed circle, £3.3)

where x, ¥y, z are the interior angles opposite the triangle sides k, p, q.
The coefficients obey the identities

_ 2 2
%pq 2% %pq T %pak T Ygkpr K Pkpq * P Ppiq?

. hkpq {3.u)

2 2
2k ’kpq = p bkpq +q

whence

2,2 2 2 2,2 2 2
= - - . = 2 -k s - -
b, ,'kpq 2(q =k )/ (q"=p") bkqp!&kpq (p Y (p=q") (3.5)
Now suppose

Ulp) = (p/x)TU(k),  U(q) = (q/x)"Tu(k). (3.6)

Equations (3.2)-(3.5) yield
[aT(k,p,q)/dt], = 217k°d, (pa/x2) " TLu)1°
e 0 Pi kpq

x {1-vT(w2-1)/(w2=v?) = W (1-v2)2(w2-v)}, (3.7)

where v = p/k , w = g/k. It is shown in the Appendix that when v < 1 and
w > 1 the curly bracket in (3.7) is > 0 if 0 < r <« 2 and < 0 i{f r < 0 or

r > 2, Thus the initial growth of T(k,p,q) gives a positive flow into the
middle wavenumber k if r falls between the limits (0,2) set by the extreme
absclute equilibrium distributions 8 = 0 and a = 0 in (3.1). If r is out-
sige these limits, there is net flow out of k. The -5/3 and -3 similarity

ranges correspond to r = 8/3 and r = 4, both of which yield net outflow.
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4, CONJECTURES ON QUASISTEADY STATES

Are the formal -5/3 and -3 similarity ranges asymptotic limits of
states which can arise physically? Suppose that an infinite fluid is
excited by isotropic stirring forces confined to k ~ ki' where kI is a
characteristic input wavenumber, Let the stirring forces supply energy
at a steady rate ¢ and squared vorticity at a steady rate n » Rkizt.
More general ratios n/c¢ are interesting but will not be considered here.
The preceding analysis suggests that if the input continues for a suffic-

1!2!u is large enough,

iently long time and the Reynolds number [E(ki}iki]
a quasisteady state may be set up in which an approximate -3 vorticity-
transfer range carries most of the squared-vorticity input up to k »>> Kis
where it is dissipated by viscosity, while an approximate -5/3 energy-
transfer range carries most of the energy input down toward zero wave-
number. The -5/3 range can be only quasisteady because its lower end
keeps moving down to ever-lower wavenumbers, a wavenumber k << ki being

reached in a time t » (ek2) /3

according to energy conservation. As

t + =, the rate of transfer of squared vorticity from k ~ k; to lower
wavenumbers decreases steadily toward zeroc and the energy-transfer range
approaches the asymptotic -5/3 dynamics ever more closely.

The formal similarity ranges can represent asymptotic quasisteady
states only if the cascades are sufficiently local in wavenumber. The
questions involved here are the same in two and three dimensions. Local
transfer in the -5/3 range is plausible for the reasons given by Kolmo-

gorov. The transfer ls associated with the distortion of the velocity

field by its own shear. The cascade M(k) through a given wavenumber k
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in a -5/3 range is expected to be negligibly affected by wavenumbers << k
because the integral Iofizﬂ(k]dk. which measures the mean-square shear,
converges at k = 0, It is expected to be negligibly affected by wavenumbers
>> k because the vorticity associated with those wavenumbers fluctuates
rapidly in space and time and gives an effective shear across distances

of order k-t

which is small ccmpared to the shear associated with the
wavenumbers * k.
On the other hand, the s juared-vorticity spectrum in the -3 range is

- k-l

so that each octave below a given wavenumber k contributes the same
amount to the mean-square shear and the latter diverges logarithmically
toward small k. This means that transfer in the -3 range is not local
when all triad Interactions are admictted. It would seem plausible that
when this range occurs as a gquasisteady state the power law is modified
by 1uglritﬁic corrections. Subject to such corrections, the -3 range can
be expected to extend up to k N-kd = (nfua)lfﬁ. at vaich wavenumber the
integrated rate of dissipation of squared vorticity by viscosity reaches
the order of n. At higher wavenumbers, E(k) is expected to fall off at

a faster-than-algebraic rate.

The corresponding viscous dissipation of kinetic energy is €4 ~ ﬂfkdz.
which implies ¢, v e(k,/k,)°. Thus c,/c = 0 if v =0, in marked contrast
to three-dimensional turbulence where the energy loss becomes independent
of vas v+ 0, These considerations imply that the entire energy input

€ is carried down toward k = 0 without viscous loss in the limit of infinite

Reynolds number. The result is not directly applicable to meteorological



flows because the constraints which render the latter two-dimensional
break down at sufficiently high k.

The actual correctness of the strict -5/3 asymptotic inertial-
range law is not established beyond doubt in three-dimensional flow,
and the arguments for similarity ranges in two dimensions are substantially
less secure. The present paper has demonstrated some elementary consistency
properties, but this does not show that the similarity ranges actually
exist,

One important difference between two and three dimensions is the
existence of an infinite number of local inviscid constants of motion
in the former: the vorticity of each fluid element. This implies that
inertial forces alone cannot produce universal statistical distributions
iu the simlilarity ranges, independent of the statistica. distribution of
the driving forces. In three dimensions there are also an infinite
number of inviscid constants of motion: the circulations about all closed
curves moving with the fluid. However a given closed curve is expected
to stretch and migrate in complicated fashion through the fluid with the
passage of time so that it is reascnable toc expect that the circulation
invariance does not impose effective constraints on n-variate distribution

(the latter corrected by a logaritimic-type function of k/k,)
functions for small n. If (1.1) and {1.2) are realized in two dimensions“.
it is tc be expected that C and C' are not universal constants but depend
on the character of the driving forces, whatever may be the situation in
three dimensions. ;: ﬁiurth;l; peint is that the nonlocalness of transfer in
n itse

the -3 range suggests, that cascade there is not accompanied by degradation

of higher statistics in the fashion usually assumed in a three-dimensional



Kolmogorov cascade. This is consistent with a picture of the transfer
process as a clumping-together and coalescence of similarly signed vortices
with the high wavenumber excitation confined principally to thin and in-
frequent shear layers attached to the ever-larger eddies thus t‘omd.]"5
In connection with the sign of ¢ in the -5/3 range, it should be
noted that a positive-¢ range extending from the input wavenumbers up
to the dissipation range would be physically unrealizable. The viscous
dissipation would remove squared vorticity and kinetic energy in a ratio
ndh:d which would greatly exceed the ratio at which these gquantities
were cascaded, since the latter ratio goes to zero as the asymptotic
=5/3 structure is approached. Thus an upward-transfering -5/3 range
could not exist as a quasisteady state. The inconsistency of such a
range has previously been demonstrated by Lee.’
Suppose now that the fluid is confined to a finite domain and that
*he lowest wavenumber allowed by the boundary conditions is k_ << k..

0 i
The conjecture is offered here that after the -5/3 range reaches down

to wavenumbers " ko the doewnward cuciada from k i continues and the energy
delivered to the bottom of the range piles up in the mode ku. As the
energy in kn rises sufficiently, modification of the -5/3 range toward
absolute equilibrium is expected, starting at the bottom and working up
to progressively larger wavenumbers.

Some support for the idea of energy piling up in k, comes from con-
sidering the absolute equilibrium ensembles (3.1). Suppose that the

wavenumber range is truncated from below at k, and from above at a wave-

0
number ko . Let the mean energy and mean-square vorticity have specified
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values E and @ = 2k,°E. The ratio and signs of 8 and & in (3,1) depend

on the relative values of k kl' and k__ . In particular,

ui

u=01fk12=

.

(ki = ko WAtk k), (4.1)

+ k 2

s 0 itk ek :

l J )l {niz’

For values of kl2 between (4.1) and (4.2), a > 0, 6 > 0. For k 2 Jess than

1
2 2 2 .
6 THY 0. If kl-ko << kﬂ, then ﬂka + a << B—kG and E(k)
2 2
o+ For k,” greater than (4.2), a>»0, -a;kmax < g
< 0, and k’E(k) shows a sharp peak at k = K if K™

(4,1), 6 > 0, -Bk
has a sharp peak at k = k

k, << k__.. The

1 * max
values kl < ka and kl > knax are iupossible. These results are all for
a continuous spectrum of allowed wavenumbers. When the discreteness
associated with a finite fluid is taken into account, the sharp peak in

E(k) is modified so that the lowest mode k., singlehandedly carries most

0
of the total kinetic energy if kl-ku is much less than the mode separation 8k
of the lowlying degrees of freedom,

These results suggest that a piling up of energy in ku under a
steady input would represent a plausible way for the wavenumbers < ki to
seek an absolute statistical equilibrium of the kind that corresponds to

very large E/fi. The phenomenon is analogous to the Einstein-Bose condenr-

sation of a two-dimensional quantum gas.
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APPENDIX, PROOFS OF INEQUALITIES
Take w > 1, 0 < v < 1 throughout this Appendix. Let
I(v,w) = (1-v2) In(w)+(w?=1) In(v).

Then I(1,%) = 0, 3I(¥,w)/3v = (wo-1)/v

2vin{w), and

(1]

[31(v,w)/3v] ) = (W'=1) =2 In(w) = F(w).

Now F(l) = 0, dF(w)/dw = 2w = 2/uw > 0. Therefore wiel > 2 In{w) and,
since vios v, it follows that 3I(v,w)/3v > 0, so that I(v,w) < 0., This
establishes HI{V,H,EIS} > 0.

Let
J(v,w) = (1-v" )’ In(w)+(w’=1)v°In(v).

Then J(1l,w) = 0, 3J{v,w)/dv = {uz-llv[1+21n{v)]-2vu21n{w]. Nau!ugln(u)
> u2-1 and v - v+2vin(v), the first inequality readily following upon
differentiation and the second follruing from 1ln(v) < 0., Therefore,
3aJ(v,w)/ov < 0, J(v,w) > 0, whence Hiiv,u,ai < 0.

Let
K(v,w,?) = 1-vr(u2-1}{(uz-v23 - u’(;.vi};{uz_vz).

Then
(v, w,r) /30 = [V (w2=1)In(v" L) = wF(1-v?)1n(w) 1/(w2=v?),

considered as a function of r, is the sum of a positive term of
mondtonically decreasing magnitude and a negati.e term of monotonically
increasing magnitude. Therefore it has just one zero, and It is positive
as r + -=, negative as r *+ +=, Since K(v,w,r) has zeroces at r = 0, r = 2,
it follows that K(v,w,r) is >0 for 0 <r <2 and < 0 forr <0 and r > 2.

This establishes the sign of the right-hand side of (3.7).
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FIGURE CAPTION

FIG. 1. Part (a) represents the cascade of excitation through the
wavenumber spectrum by means of elementary triad interactions. Part (b)
represents a pair-interaction cascade, which is a valid simplification in

three dimensions but not in two dimensions.
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